
A Short Introduction to Curses

Keith Gaughan

March 22, 2003

Contents

1 A wee problem and a history lesson 1
1.1 Long, long ago, on a college campus far, far away. . .. 1
1.2 . . . which begat Curses. 1

2 Starting with Curses 1
2.1 Builing a program. 1
2.2 A short example. 2

2.2.1 Breakdown of the example. 2
2.2.2 The mysterious refresh(). 2

3 Dealing with the screen and positioning 3
3.1 How the screen is laid out. 3
3.2 Writing to the screen. 3

3.2.1 addch() . 3
3.2.2 addstr(). 4
3.2.3 addnstr() . 4

3.3 Positioning the cursor. 4
3.4 Clearing the screen. 4

4 Handling the keyboard 4
4.1 Keyboard modes. 4

4.1.1 Echoing characters to the screen. 4
4.1.2 Turning line buffering on and off. 4

4.2 Getting input . 5
4.2.1 getch() . 5
4.2.2 getstr() . 5
4.2.3 getnstr(). 5

5 Odds and ends 5
5.1 beep() . 5
5.2 flushinp() . 5

6 Elvis has left the building. . . 5

i

1 A WEE PROBLEM AND A HISTORY LESSON 1

1 A wee problem and a history lesson

Have you ever felt thatprintf() et al, while terribly useful in their own right, are annoyingly deficient
in others. I mean, you can’t use them to print at any arbitrary location on the screen, neither is there any
nice, simple way of clearing the screen. Getting stuff from the keyboard is yet more frustrating:gets()
isn’t safe and so the only way of safely reading a string in from the keyboard is withfgets() , which can
feel like overkill at the best of times.scanf() is only really good for reading highly formatted data and
is useless when it comes to reading arbitrary lines of text. All in all, writing a UI for your console-based
programs is a right royal pain in the ass.

1.1 Long, long ago, on a college campus far, far away. . .

That, amongst others, is whyCurseswas written. Back when Bill Joy, was writing the first version ofvi1

at Berkeley, he had a problem—there were no standard set of control codes for controlling things like the
cursor position, clearing the screen, setting the text colour, ringing a bell, etc. Each type of terminal has
their own set. This, as you can imagine, made writing programs that did anything more than print lines and
read from from the keyboard rather difficult.

So Joy, being the good programmer that he was, abstracted2 the problem. He created a library that read
terminal capabilitiesfrom a database file. This way he never had to worry about what terminal was being
used—if the data wasn’t there, it was just a matter of adding it to the database3.

1.2 . . . which begat Curses

Joy’s library was a good solution and came to be widely used in other programs. Now nobody had to worry
about what commands to send to the terminal, they just had to read them from the database. But there’s
always a better way of doing things, I mean, why should you have to read the control codes out of the
database to position the cursor at a given place on the screen when you could wrap all that up in a function
that does it for you? Hence Curses.

2 Starting with Curses

Curses is a library that provides a rather simple and universal, if idiosyncratic, way of creating halfway-
decent interfaces for console-based programs. It hides nearly all of the nasty details of dealing with
character-based UIs. The most prevalent version of Curses floating about these days isNCurses, which pro-
vides some pretty nifty UI management functionality, but that’s outside the realm of this tutorial. There’s
also a version for Windows calledPDCurses.

2.1 Builing a program

Any program using Curses must include thecurses.h header file and, when being compiled, linked to
the Curses library by including the-lcurses flag, e.g.

gcc foo.c -o foo -lcurses

Before your program can start using any of Curses’ functionality, it must callinitscr() . This
allows Curses to setup its data-structures and allocate any other resources it needs. When your program’s
terminating, you need to callendwin() , which will give Curses a chance to clean up after itself.

1Which was considered anextremelyuser-friendly text editor when it first appeared. If you want to see what people were enduring
up until then, tryed and you’ll never cursevi ever again. . .

2And this is always a good thing as one of the primary virtues of a programmer islaziness—good programmers will put in a little
bit of extra work in the short term because they know that doing so will save them a heap of work in the long term. This is why they
create libraries, keep their code well-factored to minimise redundancy and maximise reusability, and so on.

3Actually, he did this twice—the first version was calledtermcapand the next,terminfo. Terminfo was created to solve scalability
and organisational problems in the Termcap database as well as other problems with the library.

2 STARTING WITH CURSES 2

2.2 A short example

Here’s a program that does nothing more than print a message out to the screen, wait a couple of seconds,
and then exit. If you can grasp what’s happening here, you’ve grasped a lot about Curses.

/* A basic Curses demo */

#include <stdio.h>
#include <unistd.h>
#include <curses.h>

void main(void)
{

/* Attempt to initialise Curses. */
if (initscr() == NULL)
{

/* Feck! Something went wrong... */
perror("Couldn’t initialise Curses!");
exit(EXIT_FAILURE);

}

/* Print something out. */
printw("I am Curses. Hear me squeak!");

/* Make sure any changes are shown. */
refresh();

/* Wait for a couple of seconds... */
sleep(2);

/* Clean up! */
endwin();

}

2.2.1 Breakdown of the example

The first thing going on is the program attempts to initialise Curses with a call toinitscr() . This may
or may not fail, but you can tell when it does because it’ll returnNULL. If this happens, we need to handle
it. Here we just complain and exit with an error.

Next we encounter theprintw() function. This acts exactly likeprintf() , except it’s part of
Curses. Nothing odd here.

The next line may strike you as odd though. Curses doesn’t write stuff out to the screen immediately—
you have to tell it when to update the screen. This is whatrefresh() is for, but more about that in a
bit.

sleep() you’ve probably encountered before. It puts the process to sleep for a number of seconds.
And finally, endwin() cleans up after Curses and restores the contents of the screen from before

initscr() was called.

2.2.2 The mysterious refresh()

refresh() a legacy of when Curses was first created. Back then, the connection between a dumb
terminal and the server wasslooow4.

4To put things in perspective, a typical modem these days runs at about 56 kilobauds, whereas the connections between dumb

3 DEALING WITH THE SCREEN AND POSITIONING 3

To keep refreshes efficient, Curses keeps two buffers—one, calledcurscr , which reflects the true
contents of screen, and another, calledstdscr , which holds a copy of the screen as you’d like it to look.
By analysing the differences between these two, Curses can efficiently update the contents of the screen
when you callrefresh() . Even these days, this makes good sense because there’s no sense in updating
the screen until you really need to, sorefresh() isn’t completely redundant.

3 Dealing with the screen and positioning

3.1 How the screen is laid out

The screen, as far as Curses is concerned, is a grid of character cells with its origin in the top-left of the
screen.

Figure 1: How Curses views the screen

The origin in the top-left is denoted by (0,0). The coördinate values for each axis increase as you move
down and to the right5. One of Curses’ idiosyncracies is that coördinates are given as (y,x), rather than the
more conventional (x,y) order6. If it helps think of the cöordinates as being given in (line, column) order.

To figure out how big the screen is, you use the, yet again, rather idiosyncraticgetmaxyx() , e.g.

int maxy, maxx;

getmaxyx(stdscr, maxy, maxx);
printw("The maximum x and y co-ordinates are %d and %d.\n",

maxx, maxy);

The waymaxy andmaxx are passed in isn’t a typo—getmaxyx is a macro that extracts information
from the screen structure (in this casestdscr), and puts it in the variables passed in.

You can use the result to make sure the screen is big enough to fit the needs of your program.

3.2 Writing to the screen

In addition toprintw() , there are a number of other functions for putting stuff out on the screen.

3.2.1 addch()

Writes a character to the screen.

int addch(char ch);

terminals and servers back then were only just a little faster than a speeding turtle—between 2 kilobauds and, if you werereally
lucky, 9 kilobauds.

5must. . . resist. . . making. . . JFK joke. . .
6Another one of thoseJamaican Goldmoments, I’ll warrant!

4 HANDLING THE KEYBOARD 4

3.2.2 addstr()

Writes a string to the screen. This is useful if you don’t needprintw() ’s formatting abilities.

int addstr(char* str);

3.2.3 addnstr()

Like addstr() , but only writes a given number of characters out. This can be a bit safer in places.

int addnstr(char* str, int n);

3.3 Positioning the cursor

Being able to print to the screen is great, but being able to position the cursor where you want would be
pretty useful too, hencemove() , which lets you do this.

int move(int y, int x);

In addition, all the output routines have special forms starting withmv that allow you to include cursor
coördinates in them. In each one, the coördinates you want are specified in the first two arguments, for
instance themvversion ofaddch() would be:

int mvaddch(int y, int x, char ch);

And all the others (mvprintw() , mvaddstr() , mvaddnstr()) work in exactly the same way.

3.4 Clearing the screen

The clear() function lets you clear the screen.clrtobot() erases everything from wherever the
cursor is to the bottom of the screen.clrtoeol() clears everything from the cursor to the end of the
current line. Dead handy these!

int clear(void);
int clrtobot(void);
int clrtoeol(void);

4 Handling the keyboard

Curses includes its own suite of functions for dealing with keyboard input. You should use these in prefer-
ence to the regular ones instdio.h when you want to get input from the user.

4.1 Keyboard modes

4.1.1 Echoing characters to the screen

Normally, characters areechoedwhen typed, but sometimes you don’t want this to happen, e.g. the user is
typing a password. To turn this off, callnoecho() , and to turn it back on useecho() .

4.1.2 Turning line buffering on and off

Characters are buffered by the terminal until a newline is typed by default. To turn buffering off, call
cbreak() , and to turn it on again callnocbreak() .

5 ODDS AND ENDS 5

4.2 Getting input

4.2.1 getch()

Reads a single character from the keyboard. It also has amv form that moves the cursor before the read.

int getch(void);
int mvgetch(int y, int x);

4.2.2 getstr()

Reads a string from the keyboard. This is equivalent to a series of calls togetch() until a newline is
typed. The resulting string is then placed in the buffer pointed to bystr . Just likegetch() , this has a
mvvariant.

int getstr(char* str);
int mvgetstr(int y, int x, char* str);

4.2.3 getnstr()

This is asafeversion ofgetstr() that allows you to limit the number of characters that can be typed to
n, hence preventing buffer overflow and bad breath.

int getnstr(char* str, int n);
int mvgetnstr(int y, int x, char* str, int n);

5 Odds and ends

5.1 beep()

Makes the terminal beep. Exciting, huh?

int beep(void);

5.2 flushinp()

Throws away any characters the user might have typed that haven’t been read.

int flushinp(void);

6 Elvis has left the building. . .

There’s much more stuff in Curses than just that, but for simple programs, that’s all you need. Other topics
I’ll probably be covering in further articles includeforms, pads, windows, colour andusing the mouse.

If you’ve any questions or comments, you’ll always be able to get me at<kmgaughan@eircom.net>,
though<kgaughan@mcom.cit.ie> should work too. The latest version of this document should be down-
loadable from eithermy websiteor my weblog.

mailto:kmgaughan@eircom.net
mailto:kgaughan@mcom.cit.ie
http://www.talideon.com/
http://hereticmessiah.weblogs.com/

	A wee problem and a history lesson
	Long, long ago, on a college campus far, far away…
	…which begat Curses

	Starting with Curses
	Builing a program
	A short example
	Breakdown of the example
	The mysterious refresh()

	Dealing with the screen and positioning
	How the screen is laid out
	Writing to the screen
	addch()
	addstr()
	addnstr()

	Positioning the cursor
	Clearing the screen

	Handling the keyboard
	Keyboard modes
	Echoing characters to the screen
	Turning line buffering on and off

	Getting input
	getch()
	getstr()
	getnstr()

	Odds and ends
	beep()
	flushinp()

	Elvis has left the building…

